首页> 外文OA文献 >Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case
【2h】

Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case

机译:具有多个缺失测量的传感器网络中的分布式H∞共识滤波:有限时域情形

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with a new distributed H∞-consensus filtering problem over a finite-horizon for sensor networks with multiple missing measurements. The so-called H∞-consensus performance requirement is defined to quantify bounded consensus regarding the filtering errors (agreements) over a finite-horizon. A set of random variables are utilized to model the probabilistic information missing phenomena occurring in the channels from the system to the sensors. A sufficient condition is first established in terms of a set of difference linear matrix inequalities (DLMIs) under which the expected H∞-consensus performance constraint is guaranteed. Given the measurements and estimates of the system state and its neighbors, the filter parameters are then explicitly parameterized by means of the solutions to a certain set of DLMIs that can be computed recursively. Subsequently, two kinds of robust distributed H∞-consensus filters are designed for the system with norm-bounded uncertainties and polytopic uncertainties. Finally, two numerical simulation examples are used to demonstrate the effectiveness of the proposed distributed filters design scheme. © 2010 Elsevier Ltd. All rights reserved.
机译:本文涉及具有多个缺失测量的传感器网络在有限水平上的新的分布式H∞共识滤波问题。定义了所谓的H∞共识性能要求,以量化关于有限水平上的过滤误差(协议)的有界共识。一组随机变量用于对概率信息进行建模,该概率信息缺少从系统到传感器的通道中发生的现象。首先根据一组差分线性矩阵不等式(DLMI)建立一个充分条件,在该条件下可以保证预期的H∞共识性能约束。给定系统状态及其邻居的测量值和估计值,然后通过对可以递归计算的一组DLMI的解决方案,对滤波器参数进行显式参数化。随后,针对具有范数界不确定性和多位不确定性的系统,设计了两种鲁棒的分布式H∞共识滤波器。最后,使用两个数值模拟实例来证明所提出的分布式滤波器设计方案的有效性。 ©2010 ElsevierLtd。保留所有权利。

著录项

  • 作者

    Hung, YS; Shen, B; Wang, Z;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号